
LLNL-CONF-644263

Monitoring Of The National Ignition
Facility Integrated Computer Control
System*

J. Fisher, M. Arrowsmith, E. Stout

September 26, 2013

ICALEPCS 2013
San Francisco, CA, United States
October 6, 2013 through October 11, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

MONITORING OF THE NATIONAL IGNITION FACILITY INTEGRATED

COMPUTER CONTROL SYSTEM*

J. Fisher, M. Arrowsmith, E. Stout, LLNL, Livermore, CA, 94550, U.S.A.

Abstract

The Integrated Computer Control System (ICCS), used by

the National Ignition Facility (NIF) provides

comprehensive status and control capabilities for

operating approximately 60,000 devices through 2,600

processes located on 1,800 servers, front end processors

and embedded controllers.[1] Understanding the

behaviors of complex, large scale, operational control

software, and improving system reliability and

availability, is a critical maintenance activity. In this paper

we describe the ICCS message logging framework, with

tunable detail levels and automatic rollovers, and its use

in analyzing system behavior. ICCS recently added

Splunk as a tool for improved archiving and analysis of

these log files (about 50GB, or 35 million logs, per day).

Splunk now continuously captures all ICCS log files for

both real-time examination and exploration of trends. Its

powerful search query language and user interface

provides interactive exploration of log data to visualize

specific indicators of system performance, assists in

problems analysis, and provides instantaneous

notification of specific system behaviors.

THE MSGLOG FRAMEWORK

 A core framework of ICCS is the MsgLog (“message

log”) API for recording status messages to a file system.

Implemented in both Ada and Java, all ICCS software

layers use this logging engine.

Log files are designed to be rolling, with old messages

on the file system removed at regular intervals. Each

ICCS process, through configuration data, specifies the

number of log files to rotate through, and the maximum

size of each log file. To allow viewing of start-up

behavior, the first log file generated is not part of the

rotation process. A default behavior of four log file,

10,000 lines each, is used if no overriding configuration

data is provided. Here is a sample log entry:

2013/06/17 15:14:21.8973 T_LOG

OPG|Q25T|AMC|Shape_Sys (TID 0055) Entering

Setpoint_Monitors.Create_Mappers to map taxon

OPG|Q25T|AMC|Shape_Sys

The first two fields are the date and time stamp. The

T_LOG identifier indicates this is a Tertiary log (typically

just for fine-grain debugging). Other possible values

include P_LOG (Primary), S_LOG (Secondary), and

E_LOG (Exceptions, or Errors). Exception logs are only

used for significant failures. Primary logs document key

system changes that can be used for incident analysis (e.g.

motor moves). Secondary and Tertiary logs are non-

critical, and left to the discretion of the system manager

and software developer. By default, tertiary logs are

disabled in production, and only enabled for

troubleshooting.

The next field, “OPG|Q25T|AMC|Shape_Sys”, referred

to as a taxon, specifies the entity that made the log entry.

Taxons are used as the ICCS naming system and each

represents a unique control point in NIF. The next field,

“(TID 0055)” specifies the thread that is writing this log

entry. The content that follows the thread is a description

of what happened.

In terms of coding, an Ada log entry would look like

this (date/time and thread are determined automatically):

Msg_Log_Api.Log_Exception("Unexpected

exception releasing AMC LCU", Get_Taxon (Self));

For the Java code base, a log entry would look like this:

log.logException("Unable to initialize

controller", ex);

The taxon value is automatically populated by the Java

Framework. The parameter ex is a Java exception object;

the corresponding stack trace will automatically be logged

as well.

Figure 1: The MsgLog Browser provides graphical

navigation of ICCS logs at runtime

*This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract

DE-AC52-07NA27344. #LLNL-ABS-632634

 LOG FILE ANALYSIS BEFORE SPLUNK

For online viewing of log files in the NIF, operators and

developers can either look at the raw logs stored on the

file system, or navigate to the logs through a graphical

Msg Log Browser (Figure 1). This browser provides basic

parsing and filtering tools to better analyze system

behavior.

 In the 24x7 NIF environment, issues come up

periodically that require a deeper offline analysis of the

log data produced by ICCS. Because the logs are rolling,

ICCS developed a “snapshot” capability, to archive the

logs as they existed when (or shortly after) the incident of

concern occurred. Typically ICCS will produce about

8,500 log files (about 18 GB of data) accumulated when

the system has been up for a few days (i.e. all process

logs are rolling over). Fortunately, the 3Par file system

provides a low-level snapshot capability, where the entire

log directory can be duplicated extremely quickly. All the

content of the copied log directory is then compressed

into a ZIP file, and transferred to the ICCS development

network file system for review. Developers then either

browse the ZIP file using the Msg Log Browser, or extract

the files as needed and browse them with text editors.

While this snapshot mechanism served ICCS well for

quite a number of years, it has some distinct limitations.

Most significantly, the rolling behavior of the logs meant

that many logs were simply lost after days or even hours.

When problems occurred (particularly during off hours), a

quick response was needed by NIF operators. But, several

manual steps were required for developers to access the

log data. The analysis tools were primitive – searching

manually through individual text files, or post-processing

the file with Perl scripts, and using Excel for further

analysis. Because of the huge quantities of log file data,

and the difficulty in exploring the data, some problems

simply remained overlooked.

SPLUNK

Fortunately, the NIF IT organization had begun

exploring a tool called Splunk for analyzing log files

generated by the thousands of computers that comprise

the NIF computing infrastructure. Splunk, developed by

the company of the same name, provides comprehensive

tools for archiving, indexing/searching, parsing,

analyzing, and visualizing tremendously large quantities

of log file data.

Splunk was rapidly recognized as a well suited engine

for better understanding ICCS log data. Today, all log

data generated by NIF ICCS, as well as the ICCS QA and

Integration environments, is stored in Splunk – about

50GB per day in total. Splunk is currently configured to

retain log data from the last 45 days.

Configuring Splunk for ICCS

Splunk captures logs by actively monitoring a parent

directory – all output to log files, and the creation of new

files, are immediately recognized, and the log data is

pulled into a data repository outside the control system

network. Now, the rollover of ICCS log files is irrelevant

– logs are captured as they occur and archived

automatically.

Each log entry has a variety of log data built in to the

filename and path of the file. Consider the filename:

.../ICCS_runs/int_master__2013_02_04__07_56_55/l

ogs/emulated_pam_fep__Q16B__iccsint001.log0

Splunk is configured to automatically recognize that the

ICCS instance is “int_master”, the program is

“emulated_pam_fep”, the location is “Q16B”, and the

host generating the log is “iccsint001”. For each log entry,

Splunk will also automatically recognize the date/time of

occurrence, the taxon, and the thread, based on regular

Figure 2: The Splunk user interface, with a view of recent log files generated by the MOR_FEP program

expressions in configuration files

Splunk provides a search language to allow arbitrarily

complex data mining. Figure 1 depicts a simple search

query into the ICCS log data. Displayed are all log entries

generated in the last 15 minutes by the MOR_FEP

running in the Integration (int_master) instance of ICCS.

Typically, the lag between log generation and viewing in

Splunk is less than five seconds.

ANALYSIS EXAMPLES

The subsections below are a small sampling of the

ways that ICCS developers and users leverage Splunk to

better understand control system behaviors.

Characterizing Error Logs

With 2,600 programs running concurrently, it has been

historically difficult to characterize the broad behaviors of

ICCS. All these programs generate diagnostic logs, but

which programs are generating a significant number of

errors? How often? Splunk now makes such questions

trivial to answer. Consider the following simple query:

instance="nif" E_LOG | top program

The query is a data cascade of two search commands

(separated by “|”). The first command (which is always an

implied search) will output all log entries containing the

text E_LOG, in the instance of ICCS called “nif”. The

‘top’ command then summarizes the output, providing the

most common values for the given field (program). The

results, over a 15 minute period, are shown in Figure 3.

The Splunk user interface provides a drilldown capability;

when the user clicks on any blue text of the first row, for

example, the query will automatically become:

instance="nif" E_LOG program="MOR_FEP"

The user will then be presented a list of actual log

entries, similar to Figure 2.

Automatic Alignment Loop Times

For each NIF experiment, ICCS executes a complex

series of steps to correctly align all 192 laser beams. A

step, or “loop” takes a certain amount of time to perform.

NIF operators have observed that the loop times were

increasing over a series of days, to the point where

timeout failures were occurring. When a loop executes, a

log is generated. For example:

2013/08/17 02:15:06.959 S_LOG

Segment_Manager|Bu45||@iccsmgrprodbu45

[Interpreter AA|B453|FOA|SEG-MGR] Metric:

[Interpreter AA|B453|FOA|SEG-MGR] Metric: @@@

SEGMGR AA_BEAM_TO_TAS_COARSE LOOP_EXECUTION

[4.4681] AA|B453|FOA|SEG-MGR

In the log, “AA_BEAM_TO_TAS_COARSE” is a loop

name, and the number in brackets is the time in seconds it

took the loop to complete. Here is a Splunk query to

visualize loop performance:

instance=nif program=segment_manager

"AA_BEAM_TO_TAS_COARSE LOOP_EXECUTION" |

rex "LOOP_EXECUTION \[(?<duration>.+)\]" |

timechart span=4h max(duration)

The first command narrows the logs to those generated

by the segment_manager programs that contain the text

“AA_BEAM_TO_TAS_COARSE

LOOP_EXECUTION”. The second command does a

Perl-like regular expression on the previous results, and

extracts the loop execution time into a new field called

“duration”. The third command generates a graphical

chart of “duration” values over a span of several days (the

date/time range is adjustable through the user interface).

The maximum duration seen during each four hour period

is plotted. The chart in Figure 3 demonstrates the query

results.

The problem was localized to performance degradation

on VxWorks Front End Processors (FEPs) used for motor

movement. A periodic restart of specific FEPs minimized

this performance degradation (longer term, VxWorks is

being replaced with Linux). The last bar in Figure 3

demonstrates the results after restarting several specific

FEPs.

Figure 3: A count of exception logs, by program, over a

15 minute period

Figure 3: Performance of an Automatic Alignment

loop, over several days

Experiment Archiving

The log entry below is generated each time a device in

ICCS archives data to a database repository, following the

execution of an experiment (or “shot”):

2013/08/06 23:59:57.701 S_LOG

Archive_Server|||@iccsprod0002 [WorkerThread 26

(Database Transaction Mgr)] Metric:

[WorkerThread 26 (Database Transaction Mgr)]

Metric: @@@ request_Data_Archive Worker [0.0297]

shotId=C130805-AA

diagId=AggregatePeriodicArchiver

requestId=137585879767000.000

formatter=nif.subsystems.cts.db.SIM960AggregateF

ormatter done

Depending on the data being archived, archiving can

take a very long time. A Splunk query allows ICCS to

characterize which formatters (code used to archive data)

are the slowest, on average:

instance=nif program=Archive_Server "@@@

request_Data_Archive" |

rex "Worker \[(?<duration>.*)\]" |

search shotId=N130804-001-999 |

stats avg(duration) by formatter

Only a particular experiment (N130804-001-999) is

looked at. The results are shown as a table in Figure 5.

This information is valuable in improving the overall

post-shot data archiving time.

Server Monitoring

All ICCS Framework and Supervisory servers are

monitored by Oracle Enterprise Manager (OEM) [2].

System performance metrics are stored in a relational

database once every five minutes.

Splunk provides the ability to mine and analyze

database tables just like log data. For example, the Splunk

query below gathers OEM metrics data, and plots the

results in a timeline:

| dbquery OEM "SELECT

regexp_replace(d.target_name, '\\..*', '') AS

Host, d.collection_timestamp, d.metric_column as

Metric_Type, TO_NUMBER(d.value) as Metric FROM

sysman.mgmt$metric_details d WHERE

d.collection_timestamp >= SYSDATE -

$selectedDays$ and d.target_type = 'host' and

d.target_name like 'iccsfwprod%' and

d.metric_column = '$selectedReport$'" |

rename COLLECTION_TIMESTAMP to _time |

timechart span=$increment$ max(METRIC) by HOST

This particular query resides in an XML file, which is a

more advanced capability in Splunk for creating

application-like dashboards. The query is parameterized

($selectedDays$, $selectedReports$, $increment$), based

on user fields on the dashboards. The user fields and the

resulting chart are shown in Figure 6.

The two hosts in this graph are both Oracle Virtual

Machines (OVMs); as a result of this analysis, memory

for both were increased (as can be seen in the graph).

OVM technology allowed this to be done without a server

restart.

CONCLUSION

A comprehensive message logging engine was

developed for ICCS at its initial development. The log

files are instrumental to understanding complex system

behaviors, but mining the log files was slow and difficult

until the introduction of Splunk.

Splunk now greatly enhances ICCS performance

analysis capabilities. Its powerful user interface allows for

ad-hoc browsing as well as application-like dashboards. It

is now much easier to evaluate and enhance ICCS

performance, resulting in improved usability and

performance of the NIF.

REFERENCES

[1] P. Van Arsdall, et al, “National Ignition Facility

Project Completion and Control System Status,”

ICALEPCS’09, Kobe, Japan, Oct 2009, TUP078, p.

260 (2009); http://www.JACoW.org.

[2] T. Frazier, et al, “Optimizing and Automating Virtual

Infrastructure for Fusion Energy Research,” Oracle

OpenWorld 2012, October 2012, SBH7169;

http://www.oracle.com/openworld.

Figure 5: The devices that take the most time to archive

data following a NIF experiment

Figure 6: Leveraging Oracle Enterprise Manager,

Splunk is used to analyze system performance metrics

stored in database tables

